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Abstract

We present a method of runtime configuration scheduling in re-
configurable SoC design. As a model of camputation in system
representation, we use a popular formal model of computation, hi-
erarchical FSM (HFSM) with synchronous dataflow {SDF) model,
in short, HFSM-SDF model. In reconfigurable SoC design with
the HFSM-SDF model, the problem of configuration scheduling is
chatlenging due to the dynamic behavior of the system such as con-
cwrent execution of state ransitiens (by AND relation), complex
control flow (in the HFSM), and complex schedules of SDF actor
firing. Thus, compile-time static configuration scheduling may not
efficiently hide configuration latency.

To resolve the problem, it is necessary 1o know the exact order
of required configurations during runtime and to perform runtime
configuration scheduling. To obtain the exact order of configura-
tions, we exploit the inherent property of HESM-SDF that the exe-
cution order of SDF actors can be determined before the execution
of state ransition of op FSM. After obtzining the order informa-
tion in a queue catied ready configuration queue, we execute the
state transition. During the execution, whenever there is new avail-
able FPGA resource, 3 new configuration is selected from the quene
and fetched by the mantime configuration scheduler. We applied the
method to an MPEG4 decoder design and obtained up (o 21.8% im-
provement in system runtime with a negligible overhead of runtime
{1.4%) and memory usage (0.94%).

1 Introduction

Recently, reconfigurable systems design is gaining more and more
attention [1](21[3][4]. Most of research focuses on optimization
of reconfigurable resource utilization and architecture adaptability.
To increase reconfigurable resource utilization, configuration la-
tency needs to be minimized. To do that, configuration scheduling
(and caching} {S][6)[7][8}9], configuration compression [10), and
coarse-grain reconfigurable architectures [3]{11] have been stud-
ied.

In terms of design productivity of reconfigurable systerns de-
sign, to master the ever growing complexity of SoC design, for-
mal models of computation are becoming more and more impor-
tant since they enable shorter design cycle by formal analysis (e.g.
analysis of liveness, deadlock, maximum memory usage, etc.} as
well as systematic reuse. 1n commercial SoC design tools, several
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formal models of computation are supported: CFSM in Cadence
VCC [12], hierarchical FSM with dataflow in Synopsys CoCentric
System Studio {L3](L4], etc. However, for the design of recon-
figurable 50Cs, the designers still use C or HDL codes without
any specific formal models of computation, simple dataflow mod-
els [15)[8][i6], or general models of computation, e.g. process
[17], discrete event models [18], etc. There are few formal models
or design methodologies well set up for reconfigurability. Thus, in
designing the ever increasingly complex future reconfigurable sys-
tems, designers wili suffer from a severe productivity problem due
to the fack of formal analysis and systematic design reuse that could
be possible through the usage of formal models of computation.

In our work, we investigaie reconfigurable SoC design with a
popular formal model of computation, hierarchical FSM (HFSM)
with synchronous dataflow (SDF), in short HFSM-SDF.! The HFSM-
SDF model i3 well suited to design both complex control (by HFSM)
and dataflow computation (by SDF). They also enable useful for-
mal analysis including state reachability test, deadlock analysis with
bounded memory, etc. Currently, commercial tools such as Synop-
sys CoCentric System Studio [13]{14] znd academic tools such as
Prolemyll {191 support the HFSM-SDF model.

In reconfigurable SoC design with the HFSM-SDF model, the
problem of configuration scheduling is challenging due to the dy-
namic behavior of the system such as concurrent execution of state
transitions (by AND relation), complex control flow (in the HFSM),
and complex schedules of SDF actor firing. Thus, compile-time
static configuration scheduling such as [5][6] may not efficiently
hide configuration latency.

In this paper, to resolve the problem, we present a method of
runtime configuration scheduling. Section 2 gives a review of re-
fated work. Seciion 3 presents preliminaries of our work. Section
4 explains our problem. Section 5 addresses our method. Section §
gives experimental results. Section 7 concludes the paper.

2 Related Work

Among numerous reconfigurable architectures, an architecture with
uni-processor and reconfigurable resource (e.g. FPGA) has been
widely studied and commercialized [1)[2][3]). In our work, we use
a processor/FPGA architecture to implement the HFSM-SDF spec-
ification.

For efficient configuration scheduling, configuration prefetch
techniques are presented in [S){61[7). They hide configuration la-
iency by overlapping configuration fetch and useful computation.
In {8). configuration reuse is accounted for in determining priorities
of task scheduting. In [91, to maximize the reuse of configuration
in loop-intensive applications, loop fission is exploited.

As rmedets of computation used in reconfigurable systems spec-
ification and configuration scheduling, in [16], temporal partition-
ing and scheduling algorithms (ake a dataflow graph as input. In

! In the HESM-SDF model, FSM and SDF can be nested arbitrily as in Polemyll
and CoCentric System Studio,
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Figure I: An example of HFSM-SDF model.

[8]. task graphs are used in HW/SW partitioning and scheduling
for reconfigurable systems design. In {5}{6], a control fow graph
is used to investigate the opportunity of configuration prefetch. In
[E3], CSP {comymnunicating sequential process) model is used as an
input description of stream computation. In [17]and [18], a process
graph and discrete event model are used, respectively. In previous
work, these medels of computation (CSP, process, discrete event)
give hule opportunity to reducing configuration latency since they
are more general than other specific models of computation such as
SDF.

The HFSM-SDF model is a practical model of computation
since it is well suited fo design both complex contro} (by HFSM)
and dataflow computation (by SDF) and it enables useful formal
analysis such as state reachability test. To the best of the authors’
knowledge, in reconfigurable SoC design area, there has been no
previous work in using the HFSM-SDF model as the system in-
put specification and no previous work in optimizing configuration
scheduling of the HFSM-SDF model. Our contribution is to en-
able an optimized cenfiguration scheduling in reconfigurable SoC
design with the HFSM.SDF model.

3 Preliminaries
3.1 Hierarchical FSM and Synchronous Dataflow Madel

Figure | shows an example of HFSM-SDF model description. In
the figure, circles and squares represent states and SDF actors, re-
speclively. An arc between stales represents a slate transition. A
state transition arc is tagged with a guard/action. An arg between
SDF actors is tagged with the number of tokens to be consumed (for
input) and produced (for output). By default, arcs without numbers
have single token production/consumption. In the figure, the right-
most SDF graph has an arc tagged with 2 and 1. In this case, actor
B7 produces two tokens for each firing of the actor and actor Ba
consumes one token when fired. Thus, 10 balance the number of
produced tokens and that of consumed tokens, the SDF graph has
a schedule of actor firing, in short schedule. There can be several
candidates for the schedule. In the above case, we can have B+2Bs,
2B74Bs, etc. For each SDF graph, the designer sets one of them.
as the schedule of the SDF graph.

At the top of the description. we have a top FSM consisting
of two states S; and S;.° State Sy is refined to an SDF graph

2Atthe top of the hierarchy, we can also have an SDF pruph. Howevar, even in this
Ccuse, we ¢an assime that we have a (op FSM with only one stare refined 10 the SDF

consisting of two acters, By and B,. State S; has two concur-
rent sub-FSMs, Inside the circle denoted by S2, the vertical dashed
line represents AND relation between two seb-FSMs. The AND
relation makes the two sub-FSMs run concwrrently.

Siate Sa is refined to an SDF graph consisting of two SDF ac-
tors B3 and By. The SDF actor B, in the graph is further refined 1o
an FSM consisting of two states Sg and S7. Two states S and Sy
are refined to SDF graphs, respectively. In the other sub-FSM of
state Sz, states S4 and Sy are also refined to SDF graphs as shown
in the figure.

The example in Figure | may look a little complex. However, in
real SoC applications such as MPEG4 decoder. designers face even
more complex HFSM-SDF representations. For instance, our im-
plementation of MPEG4 decoder consists of 9 hierarchical FSMs,
31 states, 44 state transitions, 89 SDF actors (10 hierarchical actors
and 79 leaf actors).

Details of HFSM-SDF model can be found in [20]. In this pa-
per, to give a brief explanation of HFSM-SDF model execution, we
summarize it with three rules and some terminology as follows.

Rule I: Corresponding to a state transition of parent FSM, a child
sub-FSM makes only one state transition.

This is 2 basic rule of hierarchical construction of FSMs. When
there are sub-FSMs that have AND relation with each other, each
sub-FSM takes a singie state transition for a state transition of their
parent FSM.

Rule 2: Whenever a (self or outgoing) state transition is made from
a state, if the state is refined 1o an SDF graph, the schedule of the
SDF graph is always executed once.

This rule is needed 10 conform to Ruie 1 when a state is refined
to an SDF graph. For instance, in Figure |, when a (self or oul-
going) state ransition is made from state Sz, the schedule of SDF
graph refining the state, i.e. the schedule of BsBa is always exe-
cuted once. This rule is necessary to conform o Rule |, especially
when a state is refined to an SDF graph and the SDF graph has an
SDF actor which is refined to an FSM. In this case, to conform to
Ruie 1, for a state transition of upper level FSM, the lower level
FSM should also make a state transition. To do that, the schedule
of the intervening SDF graph needs 10 be executed once.

In another word. this rule means that the schedule of child SDF
graph is always executed, whichever (self or cutgoing) transition is
taken from the parent state that the child SDF refines. Thus, only
if we can tell current FSM states, we can tell the schedule of SDF
actor firings. In our work, we exploit this property to obtain an
ordered sequence of required configurations, called a ready recon-
figuration quene, More details will be given in Section 5.

Rule 3: When an SDF actor is refined to a sub-FSM, the sub-FSM
makes a state transition at the Jast foing of the SDF actor in the
schedule of the parent SDF graph.

This rule is needed to conform to Rule ! when an SDF actor
is refined to a sub-FSM. Rule 3 means that there are two types of
actor firing for the SDF actor refined to a sub-FSM: one (called
TypeA firing in [20]) that does not have the sub-FSM make a state
transition and the other {called TipeB firing) that enables the state
transition [20].

For instance, in the example of Figure 1, when the SDF graph
consisting of By and By fires its schedule, B3Bg, the sub-FSM
refining the SDF actor B; makes 2 state transition at the last fir-
ing of B4 in the schedule, B3Ba. In this example, it looks trivial.

graph and a self state ransition as the execution of SDF gruph. Thus. in this paper.
for the simplicity of explanation. we ussume thut we have an FSM at the top of the
hieraschy.
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1 Top FSM:.Run(} {

2 switch{iop_cur_state) {

3 case(51):

4 S1RUNSE - Schedute(y;

s H{ ice=0 } {

6 top_cur_state = 52;

T it ia==0} S2_sub_cyr_staled =S4;
8 else S2_sub_cur_state] = S5;
9 od=1:

A} }

1" break;

12 case(S2):

»n : S2.FunSDESchedule]);

14 switch{ 52_sub_cur_statet ) {

15 case(53)

1% S4.RUNSDFSchedutel);

17 {1 a= 1 ) S2_sub_cur_state? = S5;
15 break:

13 casa(SE):

20 55.RunSDFSchedule();

2t S2_sub_cur_statei =54; 0c=1;
2 break;

23 1

24 if(le== 1) (lop_cur_state=St; od=10; }

25 break:

% )

27

Figure 2: A code section of implemented HFSM code for the spec-
ification of Figure 1.

However, in the case that the SDF actor is fired several times in the
schedule. The sub-FSM makes a single transition at the last firing
of the SDF actor in the schedule.
The tast terminology is conditional initial transition. 1tis needed

10 determine an initia] state when entering a hierarchical FSM. It is
denoted with an arc that does not have a source end but a desti-
nation end. In Figure 1, state S4 and S5 have conditional initial
wransitions. When entering state 52, o deterrnine which state (be-
tween Sy and Ss) Lo enter, we evaluate the guards of condirional
mitial ransitons. In this case, the cumrent siate can be Sq (if ja ==
0y or S5 (if ia = 1). For more details of HFSM-SDF maodel, more
generally, HFSM with concurrency todels, refer 1o {20).

3.2 Target Architecture and Implementation

We implement an HFSM-SDF specification on an SoC target archi-
tecture consisiing of a processor (ARM7) and FPGA (Xilinx Vir-
tex). The FPGA allows partial runtime reconfiguration. Thus. we
can run concufrently both configuration and computation on the
FPGA.. We can aiso run FPGA reconfigaration and processor com-
putation concurrently.

Given an HESM-SDF specification and HW/SW mapping of
SDF actors by the designer, we implement the HFSM pan on the
processor. We implement SDF actors either as co-processors (run-
ning matuaily exclusively with the computation on the processor)
on the FPGA or as functions running on the processor.

From the HFSM mode!. we implement a sequential code by se-
riatizing concurrent execution of FSMs. Figure 2 shows a code sec-
sion that implements the top HESM of the example in Figure |, To
execute a state transition of the top FSM, the function TopFSM::Run{)
is called {line | in Figure 2}. If the current state of the 1op FSM
is S;. then according to Rule 2 and 3. the refining SDF graph of
state 8, fires its schedule (S1.RunSDE() in line 4). In this case,
the schedule is B1B2. Then, the guard of outgoing transition is
evatuated (line 3). If the evaluation is true, then the outgoing state
transition is performed (lines 5-9). Noie that, in this case, since the
state to be entered, S, has twa sub-FSMs one of which has condi-
tional initial transitions, we need to resolve the initial states of the
sub-FSM. To do that, we evaluate the guards of conditional initial
transitions and set a corresponding initial state (lines 7-8).

1f the current state is S; (line 12}, then both sub-FSMs can make
state transitions. In the code of Figure 2, we first make the state
wansitien of state Sg (line 11). After making the state transition,

(a) Case 1: when S; Is current state.
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Figure 3: Examples of dynamically determined configuration order
and corresponding configuration prefetch.

we make the state transition of the other sub-FSM (consisting of
state 54 and Ss).

If the current state of the sub-FSM is S, (line 15), then we run
the SDF graph refining the state 54 (tine 16). The guard of outgoing
state transition is evalvated and, if true, the next state of the sub-
FSM becomes S {line 17). A similar code, for the case that the
cuwrrent state is s, is in lines 19-21. Finally, the guard of outgoing
state transition of state S; is evaluated and, if true, the next state of
top FSM becomes S; (line 24).

4 Problem

Required configurations are determined dynamically.

Figure 3 shows the SDF graph refining state Ss and its sub-FSM in
the example of Figure 1. In Figure 3, shaded rectangles represent
that the corresponding SDF actors are implemented on the FPGA.
Thus, configuration fetch is required before their execution. White
rectangles are assumed to be executed on the processor as software
functions.

In Figure 3 (a). we assume that the schedule of the SDF graph
consisting of Bs and By is BaBy, that the sub-FSM refining the
SDF actor Bg has Sg as its current state, and that the schedule of
the SDF graph refining state Sg is BoBio. In this case. the 1otal
firing order of SDF actors is BsBgBio as shown at the botiom of
Figure 3 (a}. In this case, in terms of configuration scheduling, the
configuration latency of Bs can be hidden (in part or in total) by
overlapping the computation of B3 (on the processor) and the con-
figuration prefetch for By. In the figure, the configuration prefetch
is represenied by the dashed and shaded rectangle denoted by Bg.

Figure 3 (b) shows another case of SDF actor firing. Assurming
that the sub-FSM has S7 as its current state, the total firing order
of SDF actors is BaBy;Bi2 as shown at the bottom of the figure.
In this case, the configuration latency of By; can also be hidden
(in part or in total) by overlapping the computation of B3 {(on the
processor) and the configuration prefetch (the dashed and shaded
rectangle denoted by By, in the figure.

Configuration Scheduling Problem

In terms of configuration scheduling, the real problem is that the
above two cases are determined dynamically during system run de-
pending on the current state of the sub-FSM. Thus, which configu-
ration to prefetch (in the example. the configuration of Bg or that of
Bi1) needs to be determined dynamically depending on the current
state of the FSM.
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In such a case, compile-time configuration prefetch can also be
tried. However, compile-time solutiens should resort to the pre-
diction of next required configuration based on profiling informa-
tion [31[6). Moreover, when the prediction is failed, configuration
prefetch based on the prediction suffers from penalty (i.e. cancel-
ing the previous configuration fetch and launching a new config-
uration fetch). In terms of system runtime, such a penalty can be
prohibitive when the configuration latency is very large.

To reduce or, if possible, eliminate such a penalty, we need
to_know the exact order of required configurations. In our work,
we achieve the goal by dynamically precomputing the order of re-
quired configurations. Since the precomputation gives the exact
order of required configurations, our method does not suffer from
the penalty from which prediction-based methods suffer.

5 Precomputation and Runtime Configuration Scheduling
5.1 Solution Overview

Qur solution starts from the observation that if we can tell all the
current states of FSMs in the HFSM-SDF specification, we can tefl
the exact order of all the SDF actor firings which will be made dur-
ing the present state transition of top FSM.

Precomputation of ready configuration queune

For each state transition of top FSM, we evaluate al] the current
states of FSMs in the HFSM-SDF specification by traversing the
hierarchy of HFSM. After all the current states of FSMs are known,
we can build the exact firing order of SDF actors by constructing
it with the SDF schedules of child SDF graphs, in a bottom up
manner, from leaf SDF graphs. In the example of Figure 3 (a),
the SDF graph refining the current state (Sg) gives SDF schedule
BgBjo. Then, we go up one level to the SDF graph consisting of
Bj and By In the schedule of the SDF graph, B3B4, we substitute
the firing of SDF actor By with the schedule of its child SDF graph,
Bg¢Bjo. Finally, we obtain the schedule of B3BsBao.

The construction gives only the exact order of all SDF actor
firings for the execution of the present state transition of top FSM.
Thus, the problem of configuration scheduling is not yet resolved.
For configuration scheduling, what matters is the order of required
configurations. We can build it by selecting all the SDF agtors with
FPGA implementation from the exact order of SDF actor firings. In
the example of 3 (a). the order of required configurations becomes,
trivially, Bq.

Note that since each state transition of top FSM can give dif-
ferent orders of required configurations, before each of state uan-
sition of top FSM, we obtain the order of required configurations.
Note also that since the order of required configurations is exact,
except cases of exception in HFSM-SDF run®, there is no possibil-
ity of canceling configuration prefetch which is often the case in
prediction-based methods for configuration prefetch [51{6).

Figure 4 exemplifies the execution of HFSM-SDF model and
configuration scheduling. For each state transition of top FSM, a
schedule of SDF actors is obtained. In Figure 4 (2), we assume
that the schedule consists of eight SDF actors from By to Ba. The
arrows represent execution order. For instance, B; should be ex-
ecuted before Bz. After obtaining the order, an order of FPGA
configurations is extracted. In the figure, shaded rectangles repre-
sent SDF actors implemented on the FPGA., Thus, an order of three
configurations of actors, B;, B; and By is obtained. We call the
ordered configurations ready configuration gqueue (ready CQ).

Interleaving SDF actor firings and configuratien scheduling

3 During HFSM-SDF mode! extcution, an exception can be caused by 2 sub-FSM.
If the sub-FSM is refined to un SDF graph. in this case, depending on the levels of
exception, the schedule of the SDF graph can be or cannot be execeted. 1f ic is not
executed, we need o cancel all the fetches of configurations of the schedule. For more
details of exception, refer to (20114},

Sofacter (g1 Bl el B —El—E—E]

Configuration
scheduiing

State transition [PC{CS| B, ]

(a) Precomputation of ready CQ

time |-
hot tg ty s i

{b) Interleaving state transition and contiguration scheduling

g

Figure 4: Interleaving SDF actor execution and configuraton
scheduling.

1 YopFSM:: Precompuis{RoadyCaQ) {

2 switch{top_cur_state) {

3 case(S1):

4 S1l.insertduesue{ReadyCQ):

5 break;

14 casa{S2):

7 S3.InsertGueve(ReadyCQ);

e switch{ 52_sub_cur_statal ) {

s Cane(S4):

10 S4.InsertQuevs{RaadyCQ);

1 ks SDF

12 case(S5): FER

12 £5.InsertQuevs{FeadyCa); B B
14 beeak: Sa .
15 } Y

18 break; hrs J

7o} ~._ SDF schedule =B,2(8,)

18} " ReadyCQ += <B, ><| >

{a) An example ot precomputation

(b} An exampie of reagy CQ
function code construction

Figure 5: Examples of precomputation function and ready CQ.

The execution of state transition, i.e. the execution of SDF actors is
interleaved with configuration scheduling as exemplified in Figure
4 (b). At the beginning of the state wansition, the precomputation
(PC) is performed to obtain the ready CQ uniil time t;. Then, at
time t2, the configuration scheduler (CS) launches configuration
feich for the first configuration (in this example, the configuration
of Bz). At the same time, the first SDF actor {in this example,
Bi) starts to execute. As shown in the figure, the configuration
fetch is overlapped with the SDF actor execution thereby the hiding
configuration latency.

At time t3, the SDF actor B; terminates its execution. The
second SDF actor, B; needs 10 be executed. However, since the
configuration fetch for the SDF actor has not been completed, the
SDF actor waits for the configuration fetch to be completed. At
time t4, the configuration fetch is completed and the SDF actor
By starts 10 execute. At time ts, since the SDF actor implemented
on the FPGA tetmninates its execution and its configuration is no
longer needed on the FPGA, the configuration scheduler is invoked
1o fetch a next necessary configuration (in this example, the config-
uration of B,) onto the FPGA. Interleaving of SDF aclor execution
and configuration scheduling continues in this way.

In the next two subsections, we will explain the details of pre-
computation of ready CQ and runtime configuration scheduling.

5.2 Precomputation Function

Figure 5 {a) shows a pseudo code of precomputation function for
the case of Figure |. The pseudo code in Figure 5 (a) has the same
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Figure 6: Runtime configuration scheduler.

1 int TestFeteh( tuple glemn ) {
2 it{ elerm.cost() + cur_cost() <= 100% &&
3 Controller.CheckConflict{ elern.config_id ) == ok }
4 retum ok,
5 else

53 return not_ok;
7

}

Figure 7: Testing whether configuration fetch is allowed or not.

control structure with the code of HFSM-SDF example given in
Figure 2 since the precomputation function traverses the same hier-
archy of HFSM. The traversal is performed in a depth-first manner
and started by calling the function TopFSM::Precompute(} (line 1
in Figure 5 (a)). During the traversal, all the current states of (sub-
)FSMs are identified. It is to evaluate variables indicating current
states (lines 3, 6, 9 and 12 in Figure 5 (a)). For each current state
that is refined to an SDF graph, the ready CQ is ingrementally con-
structed {lines 4, 7, 10 or 13).

Figure 5 (b) shows an example of obtaining the ready CQ. The
figure shows, from the example of Figure 1, the FSM consisting of
state S4 and Ss and the SDF graph refining state S5. We assume
that the current state of FSM is Ss and that the SDF actors (By
and Ba) in the refining SDF graph are implemented on the FPGA.
Thus, their configurations need 1o be fetched onto the FPGA. As
shown in the figure, the schedule of SDF graph is B72Bs. In this
case, for the schedule, the function 85.InsertQueue(ReadyCQ) in
line 13 of Figure 5 () inserts into a ready CQ an ordered sequence
of two teples, < By, 10, 1>< Bg, 30, 2 >. A tuple consists of <
configuration id, configuration cost in percentage, number of con-
figuration requests >>. Note that, in this case, by using the number
of configuration requests in the tuple, we use a single topte for two
times of configuration request for Bg.

After the depth-first traversal, the precomputation function of
top FSM gives the entire ready CQ (ReadyCQ in Figure 3 (a)). The
runtime configuration scheduler {Section 5.3) will use the ready CQ
to fetch configurations.

Note that the precomputation does nol change the original HFSM.
Compared with the code in Figure 2, Figure 5 (a) shows that the
precomputation funciion does not set ootputs, nor state variables.
From the original code of HFSM, the precomputation function is
made by extracting the hierarchy (control structure of the original
code), and state variables (1o read them).

5.3 Runtime Configuration Scheduler

The configuration scheduler is executed in one of three cases: when
the precomputation of ready CQ is done, when an SDF actor termi-
nates its execution on the FPGA, and when a configuration feich is

completed. It treats two queues, ready CQ and 2 queue called re-
quested configuration queue (requested C@). The requested CQ is
used to maintain the information of cusrent configuration requests.

Figure 6 shows how the configuration scheduler runs. 1n the
figure, an SDF actor B; terminates its run on the FPGA and sends
a done signal to the configuration scheduler (arrow number 1). The
configuration scheduler checks to see if the configuration of the ter-
minated SDF actor is still needed {this case will be explained later
in this section). If not, it remaves the request from the requested
CQ (arrow number 2). The configuration scheduler checks the first
tuple in the ready CQ to see if its configuration can be fetched onto
the FPGA (arrow number 3 in Figure 6).

Figure 7 shows a pseudo code of such a test. Function Test-
Fetch checks, first, 1o see if there exists enough FPGA space for
the new configuration (line 2 in the figure). In the code, cur_cost()
returns the current usage of FPGA in percentage. Alihough there
is enough space {(in terms of resource usage percentage) for the
new configuration, the new configuration may conflict with existing
configurations. The confiict is caused by the [imitation of shared re-
source such as global wires, /O pins, etc. Thus, we need 10 check
the conflict (line 3).

If the new configuration is allowed to be fetched onto the FPGA,
the corresponding tuple is moved from the ready CQ to the re-
quested CQ (arrow number 4 in Figure 6). Then, the new configu-
ratjon is fetched (in this case, for an SDF actor B, arrow number
5). The configuration scheduler runs in this way.

Note that a configurarion request can contain multiple rimes of
request for the same configuration. For instance, if the current wple
is < By, 50, 2 >, then the request contains two times of request for
the configuration of SDF actor By that consumes 50% of FPGA
cost.

I the operation of configuration scheduler, we need to pay at-
tention to the following two cases.

» Case 1: when the requested configuration is already on the
FPGA.

s Case 2: when the configuration of terminaied SDF actor was
requested multiple times.

In Case 1, if there is a new request for an existing configera-
ticn on the FPGA, then the request is marked as serviced and no
configuration fetch is performed. Thus, we can reuse the existing
configuration while preventing redundant configuration fetch.

To deal with Case 2, when an SDF actor terminates its execu-
tion on the FPGA, we check to see if the configuration of the termi-
nated SDF actor was requested multiple times. The test is simple
since a tuple in the requested CQ contains the number of config-
uration requests. For instance, if an SDF actor, By terminates its
execution and if the configuration controlier finds a tuple of < B;,
20, 2 > in the requested CQ, then it should keep the configuration
of B; since the configuration: was requested two times and only the
first request has been serviced. In this case, the scheduler keeps the
configuration and decrements the number of configuration requests
by one {2 to 1 in this example). Thus, the scheduler removes a con-
figuration only when the configuration is no longer needed, i.e. the
number of configuration requests reaches zero.

6 Experiments

We applied our method of precomputation and runtime configura-
tion scheduling to an HFSM-SDF implementation of an MPEG4
natural video decoder [21]. The MPEG4 decoder is implemented
on the SoC architecture consisting of an ARM7 processor and an
FPGA (Xilinx XCV50E). We implemented the runtime configu-
ration scheduler on the ARM7 procgssor. The termination of both
SDF actor firing on the FPGA and configuration fetch is signaled to
the runtime configuration scheduler on the processor via interrupt.
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SDE actors_.Gate_count CLB_count Exec_delay Clg_latency

T 11980 222 1190 29568
_IQUANT 1867 _ _ 35 __ 570 12872
_Retonstruet 000 LRE3._ . 2000
AddBlocklnter, 2000 . 38 B00D__ 12672 _
AudBlockintta 2000 38 1500 12672

(a) Statistics of HW implementable functions

“Mapping IDCT . IQUANT Reconstruc’ AddBlockinter

_AddBlockintra_

_Mapping fﬁzr_ﬁ{e?h od No_Prefetch Gain(%) OV_pre(% OV, sch{% OV_toal{ %)
S

_LA
- =14 0863
a 47 970638 64,642 154 123 0.67
.0 .91_445.7.9 92,382,532 _15.66.. 046
E 341 91,034,284 15.26_ _ 0.57 _
F_ 75 207,468 99,978,461 21.78 059

(c) Runtime (¢lock cycles), runtime gain and ovethead

(d) Memory usage overhead

Table 1: Comparison between no configuration prefetch case and our method.

We run 10 frames of MPEG4 decoding with a reference motion
picture, The sofiware-only implementation of MPEG4 decoder on
the ARM7 processor consumes 82,633,799 clock cycles for the
decoding. To tave HW/SW mixed implementation, we change
HW/SW mapping of five SDF actors. Table | (a) shows the exe-
cution defay and configuration latency of HW implementable SDF
actors. Table 1 (b) shows six cases of HW/SW mapping of the SDF
actors. For the other SDF actors of MPEG4 decoder, we map them
on SW, i.e. on the ARM7 processor.

Table 1 (cj compares the muntimes of our method and those of
no configuration prefeich.? Qur method gives -1.4% to 21.8% (av-
erage 12.7%} performance improvement compared to the cases of
no configuration prefetch. Among the six cases of HW/SW map-
ping, mapping B gives runtime decrease by 1.4% compared to the
case of no configuration fetch. In this mapping, SDF actor IDCT,
IQUANT, and AddBlocklnter are mapped on the FPGA. Config-
urations of IDCT and AddBlockinter can reside on the FPGA at
the same time. Those of IDCT and IQUANT can also reside on
the FPGA at the same time. Configurations of AddBlockInter and
IQUANT conflict with each other only once. Thus, the configu-
ration fetch for each of the three SDF actors is needed only once.
After the configuration, ne reconfiguration is needed. Thas, the
configuration controller rundoes not improve the runtime much.
Instead, it adds runtime overhead by its runtime (1.4%).

The overhead of our method needs to be evaluated in terms of
runtime and memery usage (code and data memory), Table 1 (c)
shows the runtime overhead of precomputation function (OV _pre)
and runtime configuration scheduler (OV _sch). The total runtime
overhead (OV _total) is less than 1.4%. Table | (d) shows the mem-
ory usage overhead of precomputation function and runtime con-
figuration scheduler. The overhead is less than 0.94%.

7 Conclusion

In this paper, we presented 2 method of runtime configuration schedul-
ing for the implementation of hierarchical FSM with synchronous
dataflow mode). For each state transition of top FSM, first, we pre-
compute the exact order of required configurations in a ready con-
figuration queue by wraversing the hierarchy of hierarchical FSM.
Then, with the queue, a runtime configuration scheguler launches
configuration fetches as early as possible during the execution of
state transition of top FSM. We applied the presented method to
a reconfigurable design of MPEG4 natural video decoder. Exper-

4 Even in the case of no configuration prefetch, existing confip on the FPGA
<an be reused. That is. when a configuration needs to be fetched, if the same config-
uration exists already on the FPGA the cJustmg configuration is reused for the new
configuration request while p T4 configeration fetch.

imental results give up to 21.8% improvement in runtime with a
negligible overhead of runtime and memory usage.
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